Uncomment the following line to install geemap if needed.
In [ ]:
Copied!
# !pip install geemap
# !pip install geemap
Interactive extraction of pixel values and interactive region reduction¶
Interactive extraction of pixel values¶
Import libraries¶
In [ ]:
Copied!
import os
import ee
import geemap
import os
import ee
import geemap
Create an interactive map¶
In [ ]:
Copied!
Map = geemap.Map()
Map
Map = geemap.Map()
Map
Add data to the map¶
In [ ]:
Copied!
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select([0, 1, 2, 3, 4, 6])
landsat_vis = {'bands': ['B4', 'B3', 'B2'], 'gamma': 1.4}
Map.addLayer(landsat7, landsat_vis, "LE7_TOA_5YEAR/1999_2003")
Map.set_plot_options(add_marker_cluster=True)
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select([0, 1, 2, 3, 4, 6])
landsat_vis = {'bands': ['B4', 'B3', 'B2'], 'gamma': 1.4}
Map.addLayer(landsat7, landsat_vis, "LE7_TOA_5YEAR/1999_2003")
Map.set_plot_options(add_marker_cluster=True)
Activate the plotting tool¶
Tick the Plotting
checkbox and click the mouse on the map to start displaying charts.
Export pixel values to shapefile/csv¶
In [ ]:
Copied!
out_dir = os.path.join(os.path.expanduser('~'), 'Downloads')
# out_csv = os.path.join(out_dir, 'points.csv')
out_shp = os.path.join(out_dir, 'points.shp')
out_dir = os.path.join(os.path.expanduser('~'), 'Downloads')
# out_csv = os.path.join(out_dir, 'points.csv')
out_shp = os.path.join(out_dir, 'points.shp')
In [ ]:
Copied!
Map.extract_values_to_points(out_shp)
Map.extract_values_to_points(out_shp)
Interactive Region Reduction¶
Import libraries¶
In [ ]:
Copied!
import os
import ee
import geemap
import os
import ee
import geemap
Create an interactive map¶
In [ ]:
Copied!
m = geemap.Map()
m = geemap.Map()
Add add to the map¶
In [ ]:
Copied!
collection = (
ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2015-01-01', '2019-12-31')
.select('NDVI')
)
# Convert the image collection to an image.
image = collection.toBands()
ndvi_vis = {
'min': 0.0,
'max': 9000.0,
'palette': [
'FFFFFF',
'CE7E45',
'DF923D',
'F1B555',
'FCD163',
'99B718',
'74A901',
'66A000',
'529400',
'3E8601',
'207401',
'056201',
'004C00',
'023B01',
'012E01',
'011D01',
'011301',
],
}
m.addLayer(image, {}, 'MODIS NDVI Time-series')
m.addLayer(image.select(0), ndvi_vis, 'MODIS NDVI VIS')
m
collection = (
ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2015-01-01', '2019-12-31')
.select('NDVI')
)
# Convert the image collection to an image.
image = collection.toBands()
ndvi_vis = {
'min': 0.0,
'max': 9000.0,
'palette': [
'FFFFFF',
'CE7E45',
'DF923D',
'F1B555',
'FCD163',
'99B718',
'74A901',
'66A000',
'529400',
'3E8601',
'207401',
'056201',
'004C00',
'023B01',
'012E01',
'011D01',
'011301',
],
}
m.addLayer(image, {}, 'MODIS NDVI Time-series')
m.addLayer(image.select(0), ndvi_vis, 'MODIS NDVI VIS')
m
Set reducer¶
In [ ]:
Copied!
m.set_plot_options(add_marker_cluster=True, marker=None)
m.roi_reducer = ee.Reducer.mean()
m.set_plot_options(add_marker_cluster=True, marker=None)
m.roi_reducer = ee.Reducer.mean()
Export data¶
In [ ]:
Copied!
out_dir = os.path.join(os.path.expanduser('~'), 'Downloads')
# out_csv = os.path.join(out_dir, 'points.csv')
out_shp = os.path.join(out_dir, 'ndvi.shp')
m.extract_values_to_points(out_shp)
out_dir = os.path.join(os.path.expanduser('~'), 'Downloads')
# out_csv = os.path.join(out_dir, 'points.csv')
out_shp = os.path.join(out_dir, 'ndvi.shp')
m.extract_values_to_points(out_shp)