cartoee module¶
The cartoee module contains functions for creating publication-quality maps with cartopy and Earth Engine data.
add_colorbar(ax, vis_params, loc=None, cmap='gray', discrete=False, label=None, **kwargs)
¶
Add a colorbar to the map based on visualization parameters provided
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object to add image overlay to |
required |
loc |
str |
string specifying the position |
None |
vis_params |
dict |
visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options. |
required |
**kwargs |
remaining keyword arguments are passed to colorbar() |
{} |
Exceptions:
Type | Description |
---|---|
Warning |
If 'discrete' is true when "palette" key is not in visParams |
ValueError |
If |
ValueError |
If 'cmap' or "palette" key in visParams is not provided |
ValueError |
If "min" in visParams is not of type scalar |
ValueError |
If "max" in visParams is not of type scalar |
ValueError |
If 'loc' or 'cax' keywords are not provided |
ValueError |
If 'loc' is not of type str or does not equal available options |
Source code in geemap/cartoee.py
def add_colorbar(
ax, vis_params, loc=None, cmap="gray", discrete=False, label=None, **kwargs
):
"""
Add a colorbar to the map based on visualization parameters provided
args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object to add image overlay to
loc (str, optional): string specifying the position
vis_params (dict, optional): visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
**kwargs: remaining keyword arguments are passed to colorbar()
raises:
Warning: If 'discrete' is true when "palette" key is not in visParams
ValueError: If `ax` is not of type cartopy.mpl.geoaxes.GeoAxesSubplot
ValueError: If 'cmap' or "palette" key in visParams is not provided
ValueError: If "min" in visParams is not of type scalar
ValueError: If "max" in visParams is not of type scalar
ValueError: If 'loc' or 'cax' keywords are not provided
ValueError: If 'loc' is not of type str or does not equal available options
"""
if type(ax) not in [GeoAxes, GeoAxesSubplot]:
raise ValueError(
"provided axes not of type cartopy.mpl.geoaxes.GeoAxes "
"or cartopy.mpl.geoaxes.GeoAxesSubplot"
)
if loc:
if (type(loc) == str) and (loc in ["left", "right", "bottom", "top"]):
if "posOpts" not in kwargs:
posOpts = {
"left": [0.01, 0.25, 0.02, 0.5],
"right": [0.88, 0.25, 0.02, 0.5],
"bottom": [0.25, 0.15, 0.5, 0.02],
"top": [0.25, 0.88, 0.5, 0.02],
}
else:
posOpts = {
"left": kwargs["posOpts"],
"right": kwargs["posOpts"],
"bottom": kwargs["posOpts"],
"top": kwargs["posOpts"],
}
del kwargs["posOpts"]
cax = ax.figure.add_axes(posOpts[loc])
if loc == "left":
mpl.pyplot.subplots_adjust(left=0.18)
elif loc == "right":
mpl.pyplot.subplots_adjust(right=0.85)
else:
pass
else:
raise ValueError(
'provided loc not of type str. options are "left", '
'"top", "right", or "bottom"'
)
elif "cax" in kwargs:
cax = kwargs["cax"]
kwargs = {key: kwargs[key] for key in kwargs.keys() if key != "cax"}
else:
raise ValueError("loc or cax keywords must be specified")
vis_keys = list(vis_params.keys())
if vis_params:
if "min" in vis_params:
vmin = vis_params["min"]
if type(vmin) not in (int, float):
raise ValueError("provided min value not of scalar type")
else:
vmin = 0
if "max" in vis_params:
vmax = vis_params["max"]
if type(vmax) not in (int, float):
raise ValueError("provided max value not of scalar type")
else:
vmax = 1
if "opacity" in vis_params:
alpha = vis_params["opacity"]
if type(alpha) not in (int, float):
raise ValueError("provided opacity value of not type scalar")
elif "alpha" in kwargs:
alpha = kwargs["alpha"]
else:
alpha = 1
if cmap is not None:
if discrete:
warnings.warn(
'discrete keyword used when "palette" key is '
"supplied with visParams, creating a continuous "
"colorbar..."
)
cmap = mpl.pyplot.get_cmap(cmap)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
if "palette" in vis_keys:
hexcodes = vis_params["palette"]
hexcodes = [i if i[0] == "#" else "#" + i for i in hexcodes]
if discrete:
cmap = mpl.colors.ListedColormap(hexcodes)
vals = np.linspace(vmin, vmax, cmap.N + 1)
norm = mpl.colors.BoundaryNorm(vals, cmap.N)
else:
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", hexcodes, N=256
)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
elif cmap is not None:
if discrete:
warnings.warn(
'discrete keyword used when "palette" key is '
"supplied with visParams, creating a continuous "
"colorbar..."
)
cmap = mpl.pyplot.get_cmap(cmap)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
else:
raise ValueError(
'cmap keyword or "palette" key in visParams must be provided'
)
tick_font_size = None
if "tick_font_size" in kwargs:
tick_font_size = kwargs.pop("tick_font_size")
label_font_family = None
if "label_font_family" in kwargs:
label_font_family = kwargs.pop("label_font_family")
label_font_size = None
if "label_font_size" in kwargs:
label_font_size = kwargs.pop("label_font_size")
cb = mpl.colorbar.ColorbarBase(cax, norm=norm, alpha=alpha, cmap=cmap, **kwargs)
if label is not None:
if label_font_size is not None and label_font_family is not None:
cb.set_label(label, fontsize=label_font_size, family=label_font_family)
elif label_font_size is not None and label_font_family is None:
cb.set_label(label, fontsize=label_font_size)
elif label_font_size is None and label_font_family is not None:
cb.set_label(label, family=label_font_family)
else:
cb.set_label(label)
elif "bands" in vis_keys:
cb.set_label(vis_params["bands"])
if tick_font_size is not None:
cb.ax.tick_params(labelsize=tick_font_size)
add_gridlines(ax, interval=None, n_ticks=None, xs=None, ys=None, buffer_out=True, xtick_rotation='horizontal', ytick_rotation='horizontal', **kwargs)
¶
Helper function to add gridlines and format ticks to map
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object to add the gridlines to |
required |
interval |
float | list[float] |
float specifying an interval at which to create gridlines, units are decimal degrees. lists will be interpreted a [x_interval, y_interval]. default = None |
None |
n_ticks |
int | list[int] |
integer specifying number gridlines to create within map extent. lists will be interpreted a [nx, ny]. default = None |
None |
xs |
list |
list of x coordinates to create gridlines. default = None |
None |
ys |
list |
list of y coordinates to create gridlines. default = None |
None |
buffer_out |
boolean |
boolean option to buffer out the extent to insure coordinates created cover map extent. default=true |
True |
xtick_rotation |
str | float |
'horizontal' |
|
ytick_rotation |
str | float |
'horizontal' |
|
**kwargs |
remaining keyword arguments are passed to gridlines() |
{} |
Exceptions:
Type | Description |
---|---|
ValueError |
if all interval, n_ticks, or (xs,ys) are set to None |
Source code in geemap/cartoee.py
def add_gridlines(
ax,
interval=None,
n_ticks=None,
xs=None,
ys=None,
buffer_out=True,
xtick_rotation="horizontal",
ytick_rotation="horizontal",
**kwargs,
):
"""Helper function to add gridlines and format ticks to map
args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object to add the gridlines to
interval (float | list[float], optional): float specifying an interval at which to create gridlines, units are decimal degrees. lists will be interpreted a [x_interval, y_interval]. default = None
n_ticks (int | list[int], optional): integer specifying number gridlines to create within map extent. lists will be interpreted a [nx, ny]. default = None
xs (list, optional): list of x coordinates to create gridlines. default = None
ys (list, optional): list of y coordinates to create gridlines. default = None
buffer_out (boolean, optional): boolean option to buffer out the extent to insure coordinates created cover map extent. default=true
xtick_rotation (str | float, optional):
ytick_rotation (str | float, optional):
**kwargs: remaining keyword arguments are passed to gridlines()
raises:
ValueError: if all interval, n_ticks, or (xs,ys) are set to None
"""
view_extent = ax.get_extent()
extent = view_extent
if xs is not None:
xmain = xs
elif interval is not None:
if isinstance(interval, Iterable):
xspace = interval[0]
else:
xspace = interval
if buffer_out:
extent = _buffer_box(extent, xspace)
xmain = np.arange(extent[0], extent[1] + xspace, xspace)
elif n_ticks is not None:
if isinstance(n_ticks, Iterable):
n_x = n_ticks[0]
else:
n_x = n_ticks
xmain = np.linspace(extent[0], extent[1], n_x)
else:
raise ValueError(
"one of variables interval, n_ticks, or xs must be defined. If you would like default gridlines, please use `ax.gridlines()`"
)
if ys is not None:
ymain = ys
elif interval is not None:
if isinstance(interval, Iterable):
yspace = interval[1]
else:
yspace = interval
if buffer_out:
extent = _buffer_box(extent, yspace)
ymain = np.arange(extent[2], extent[3] + yspace, yspace)
elif n_ticks is not None:
if isinstance(n_ticks, Iterable):
n_y = n_ticks[1]
else:
n_y = n_ticks
ymain = np.linspace(extent[2], extent[3], n_y)
else:
raise ValueError(
"one of variables interval, n_ticks, or ys must be defined. If you would like default gridlines, please use `ax.gridlines()`"
)
ax.gridlines(xlocs=xmain, ylocs=ymain, **kwargs)
xin = xmain[(xmain >= view_extent[0]) & (xmain <= view_extent[1])]
yin = ymain[(ymain >= view_extent[2]) & (ymain <= view_extent[3])]
# set tick labels
ax.set_xticks(xin, crs=ccrs.PlateCarree())
ax.set_yticks(yin, crs=ccrs.PlateCarree())
ax.set_xticklabels(xin, rotation=xtick_rotation, ha="center")
ax.set_yticklabels(yin, rotation=ytick_rotation, va="center")
ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER)
ax.yaxis.set_major_formatter(LATITUDE_FORMATTER)
return
add_layer(ax, ee_object, dims=1000, region=None, cmap=None, vis_params=None, **kwargs)
¶
Add an Earth Engine image to a cartopy plot.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
ee.Image | ee.FeatureCollection |
Earth Engine image result to plot. |
required |
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object to add image overlay to |
required |
dims |
list | tuple | int |
dimensions to request earth engine result as [WIDTH,HEIGHT]. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Default None and infers dimensions |
1000 |
region |
list | tuple |
geospatial region of the image to render in format [E,S,W,N]. By default, the whole image |
None |
cmap |
str |
string specifying matplotlib colormap to colorize image. If cmap is specified visParams cannot contain 'palette' key |
None |
vis_params |
dict |
visualization parameters as a dictionary. See https://developers.google.com/earth-engine/image_visualization for options |
None |
Returns:
Type | Description |
---|---|
ax (cartopy.mpl.geoaxes.GeoAxesSubplot) |
cartopy GeoAxesSubplot object with Earth Engine results displayed |
Exceptions:
Type | Description |
---|---|
ValueError |
If |
ValueError |
If |
ValueError |
If |
Source code in geemap/cartoee.py
def add_layer(
ax, ee_object, dims=1000, region=None, cmap=None, vis_params=None, **kwargs
):
"""Add an Earth Engine image to a cartopy plot.
args:
ee_object (ee.Image | ee.FeatureCollection): Earth Engine image result to plot.
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object to add image overlay to
dims (list | tuple | int, optional): dimensions to request earth engine result as [WIDTH,HEIGHT]. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Default None and infers dimensions
region (list | tuple, optional): geospatial region of the image to render in format [E,S,W,N]. By default, the whole image
cmap (str, optional): string specifying matplotlib colormap to colorize image. If cmap is specified visParams cannot contain 'palette' key
vis_params (dict, optional): visualization parameters as a dictionary. See https://developers.google.com/earth-engine/image_visualization for options
returns:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot): cartopy GeoAxesSubplot object with Earth Engine results displayed
raises:
ValueError: If `dims` is not of type list, tuple, or int
ValueError: If `imgObj` is not of type ee.image.Image
ValueError: If `ax` if not of type cartopy.mpl.geoaxes.GeoAxesSubplot '
"""
if (
isinstance(ee_object, ee.geometry.Geometry)
or isinstance(ee_object, ee.feature.Feature)
or isinstance(ee_object, ee.featurecollection.FeatureCollection)
):
features = ee.FeatureCollection(ee_object)
if "style" in kwargs and kwargs["style"] is not None:
style = kwargs["style"]
else:
style = {}
props = features.first().propertyNames().getInfo()
if "style" in props:
ee_object = features.style(**{"styleProperty": "style"})
else:
ee_object = features.style(**style)
elif isinstance(ee_object, ee.imagecollection.ImageCollection):
ee_object = ee_object.mosaic()
if type(ee_object) is not ee.image.Image:
raise ValueError("provided `ee_object` is not of type ee.Image")
if region is not None:
map_region = ee.Geometry.Rectangle(region).getInfo()["coordinates"]
view_extent = (region[2], region[0], region[1], region[3])
else:
map_region = ee_object.geometry(100).bounds(1).getInfo()["coordinates"]
# get the image bounds
x, y = list(zip(*map_region[0]))
view_extent = [min(x), max(x), min(y), max(y)]
if ee_object.bandNames().getInfo() == ["vis-red", "vis-green", "vis-blue"]:
warnings.warn(
f"The region parameter is not specified. Using the default region {map_region}. Please specify a region if you get a blank image."
)
if type(dims) not in [list, tuple, int]:
raise ValueError("provided dims not of type list, tuple, or int")
if type(ax) not in [GeoAxes, GeoAxesSubplot]:
raise ValueError(
"provided axes not of type cartopy.mpl.geoaxes.GeoAxes "
"or cartopy.mpl.geoaxes.GeoAxesSubplot"
)
args = {"format": "png", "crs": "EPSG:4326"}
args["region"] = map_region
if dims:
args["dimensions"] = dims
if vis_params:
keys = list(vis_params.keys())
if cmap and ("palette" in keys):
raise KeyError(
"cannot provide `palette` in vis_params if `cmap` is specified"
)
elif cmap:
args["palette"] = ",".join(build_palette(cmap))
else:
pass
args = {**args, **vis_params}
url = ee_object.getThumbUrl(args)
response = requests.get(url)
if response.status_code != 200:
error = eval(response.content)["error"]
raise requests.exceptions.HTTPError(f"{error}")
image = np.array(Image.open(BytesIO(response.content)))
if image.shape[-1] == 2:
image = np.concatenate(
[np.repeat(image[:, :, 0:1], 3, axis=2), image[:, :, -1:]], axis=2
)
ax.imshow(
np.squeeze(image),
extent=view_extent,
origin="upper",
transform=ccrs.PlateCarree(),
zorder=1,
)
return
add_legend(ax, legend_elements=None, loc='lower right', font_size=14, font_weight='normal', font_color='black', font_family=None, title=None, title_fontize=16, title_fontproperties=None, **kwargs)
¶
Adds a legend to the map. The legend elements can be formatted as: legend_elements = [Line2D([], [], color='#00ffff', lw=2, label='Coastline'), Line2D([], [], marker='o', color='#A8321D', label='City', markerfacecolor='#A8321D', markersize=10, ls ='')] For more legend properties, see: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object. |
required |
legend_elements |
list |
A list of legend elements. Defaults to None. |
None |
loc |
str |
Location of the legend, can be any of ['upper left', 'upper right', 'lower left', 'lower right']. Defaults to "lower right". |
'lower right' |
font_size(int|string, |
optional |
Font size. Either an absolute font size or an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. defaults to 14. |
required |
font_weight(string|int, |
optional |
Font weight. A numeric value in the range 0-1000 or one of 'ultralight', 'light', 'normal' (default), 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'. Defaults to 'normal'. |
required |
font_color(str, |
optional |
Text color. Defaults to "black". |
required |
font_family(string, |
optional |
Name of font family. Set to a font family like 'SimHei' if you want to show Chinese in the legend. Defaults to None. |
required |
Exceptions:
Type | Description |
---|---|
Exception |
If the legend fails to add. |
Source code in geemap/cartoee.py
def add_legend(
ax,
legend_elements=None,
loc="lower right",
font_size=14,
font_weight="normal",
font_color="black",
font_family=None,
title=None,
title_fontize=16,
title_fontproperties=None,
**kwargs,
):
"""Adds a legend to the map. The legend elements can be formatted as:
legend_elements = [Line2D([], [], color='#00ffff', lw=2, label='Coastline'),
Line2D([], [], marker='o', color='#A8321D', label='City', markerfacecolor='#A8321D', markersize=10, ls ='')]
For more legend properties, see: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
Args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object.
legend_elements (list, optional): A list of legend elements. Defaults to None.
loc (str, optional): Location of the legend, can be any of ['upper left', 'upper right', 'lower left', 'lower right']. Defaults to "lower right".
font_size(int|string, optional): Font size. Either an absolute font size or an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. defaults to 14.
font_weight(string|int, optional): Font weight. A numeric value in the range 0-1000 or one of 'ultralight', 'light', 'normal' (default), 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'. Defaults to 'normal'.
font_color(str, optional): Text color. Defaults to "black".
font_family(string, optional): Name of font family. Set to a font family like 'SimHei' if you want to show Chinese in the legend. Defaults to None.
Raises:
Exception: If the legend fails to add.
"""
from matplotlib.lines import Line2D
if title_fontize is not None and (title_fontproperties is not None):
raise ValueError("title_fontize and title_fontproperties cannot be both set.")
elif title_fontize is not None:
kwargs["title_fontsize"] = title_fontize
elif title_fontproperties is not None:
kwargs["title_fontproperties"] = title_fontproperties
try:
if legend_elements is None:
legend_elements = [
Line2D([], [], color="#00ffff", lw=2, label="Coastline"),
Line2D(
[],
[],
marker="o",
color="#A8321D",
label="City",
markerfacecolor="#A8321D",
markersize=10,
ls="",
),
]
if font_family is not None:
fontdict = {"family": font_family, "size": font_size, "weight": font_weight}
else:
fontdict = {"size": font_size, "weight": font_weight}
leg = ax.legend(
handles=legend_elements,
loc=loc,
prop=fontdict,
title=title,
**kwargs,
)
# Change font color If default color is changed.
if font_color != "black":
for text in leg.get_texts():
text.set_color(font_color)
return
except Exception as e:
raise Exception(e)
add_north_arrow(ax, text='N', xy=(0.1, 0.1), arrow_length=0.1, text_color='black', arrow_color='black', fontsize=20, width=5, headwidth=15, ha='center', va='center')
¶
Add a north arrow to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object. |
required |
text |
str |
Text for north arrow. Defaults to "N". |
'N' |
xy |
tuple |
Location of the north arrow. Each number representing the percentage length of the map from the lower-left cornor. Defaults to (0.1, 0.1). |
(0.1, 0.1) |
arrow_length |
float |
Length of the north arrow. Defaults to 0.1 (10% length of the map). |
0.1 |
text_color |
str |
Text color. Defaults to "black". |
'black' |
arrow_color |
str |
North arrow color. Defaults to "black". |
'black' |
fontsize |
int |
Text font size. Defaults to 20. |
20 |
width |
int |
Width of the north arrow. Defaults to 5. |
5 |
headwidth |
int |
head width of the north arrow. Defaults to 15. |
15 |
ha |
str |
Horizontal alignment. Defaults to "center". |
'center' |
va |
str |
Vertical alignment. Defaults to "center". |
'center' |
Source code in geemap/cartoee.py
def add_north_arrow(
ax,
text="N",
xy=(0.1, 0.1),
arrow_length=0.1,
text_color="black",
arrow_color="black",
fontsize=20,
width=5,
headwidth=15,
ha="center",
va="center",
):
"""Add a north arrow to the map.
Args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object.
text (str, optional): Text for north arrow. Defaults to "N".
xy (tuple, optional): Location of the north arrow. Each number representing the percentage length of the map from the lower-left cornor. Defaults to (0.1, 0.1).
arrow_length (float, optional): Length of the north arrow. Defaults to 0.1 (10% length of the map).
text_color (str, optional): Text color. Defaults to "black".
arrow_color (str, optional): North arrow color. Defaults to "black".
fontsize (int, optional): Text font size. Defaults to 20.
width (int, optional): Width of the north arrow. Defaults to 5.
headwidth (int, optional): head width of the north arrow. Defaults to 15.
ha (str, optional): Horizontal alignment. Defaults to "center".
va (str, optional): Vertical alignment. Defaults to "center".
"""
ax.annotate(
text,
xy=xy,
xytext=(xy[0], xy[1] - arrow_length),
color=text_color,
arrowprops=dict(facecolor=arrow_color, width=width, headwidth=headwidth),
ha=ha,
va=va,
fontsize=fontsize,
xycoords=ax.transAxes,
)
return
add_scale_bar(ax, metric_distance=4, unit='km', at_x=(0.05, 0.5), at_y=(0.08, 0.11), max_stripes=5, ytick_label_margins=0.25, fontsize=8, font_weight='bold', rotation=0, zorder=999, paddings={'xmin': 0.05, 'xmax': 0.05, 'ymin': 1.5, 'ymax': 0.5}, bbox_kwargs={'facecolor': 'white', 'edgecolor': 'black', 'alpha': 0.5})
¶
Add a scale bar to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object. |
required |
metric_distance |
int | float |
length in meters of each region of the scale bar. Default to 4. |
4 |
unit |
str |
scale bar distance unit. Default to "km" |
'km' |
at_x |
float |
target axes X coordinates (0..1) of box (= left, right). Default to (0.05, 0.2). |
(0.05, 0.5) |
at_y |
float |
axes Y coordinates (0..1) of box (= lower, upper). Default to (0.08, 0.11). |
(0.08, 0.11) |
max_stripes |
int |
typical/maximum number of black+white regions. Default to 5. |
5 |
ytick_label_margins |
float |
Location of distance labels on the Y axis. Default to 0.25. |
0.25 |
fontsize |
int |
scale bar text size. Default to 8. |
8 |
font_weight |
str |
font weight. Default to 'bold'. |
'bold' |
rotation |
int |
rotation of the length labels for each region of the scale bar. Default to 0. |
0 |
zorder |
float |
z order of the text bounding box. |
999 |
paddings |
dict |
boundaries of the box that contains the scale bar. |
{'xmin': 0.05, 'xmax': 0.05, 'ymin': 1.5, 'ymax': 0.5} |
bbox_kwargs |
dict |
style of the box containing the scale bar. |
{'facecolor': 'white', 'edgecolor': 'black', 'alpha': 0.5} |
Source code in geemap/cartoee.py
def add_scale_bar(
ax,
metric_distance=4,
unit="km",
at_x=(0.05, 0.5),
at_y=(0.08, 0.11),
max_stripes=5,
ytick_label_margins=0.25,
fontsize=8,
font_weight="bold",
rotation=0,
zorder=999,
paddings={"xmin": 0.05, "xmax": 0.05, "ymin": 1.5, "ymax": 0.5},
bbox_kwargs={"facecolor": "white", "edgecolor": "black", "alpha": 0.5},
):
"""
Add a scale bar to the map.
Args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object.
metric_distance (int | float, optional): length in meters of each region of the scale bar. Default to 4.
unit (str, optional): scale bar distance unit. Default to "km"
at_x (float, optional): target axes X coordinates (0..1) of box (= left, right). Default to (0.05, 0.2).
at_y (float, optional): axes Y coordinates (0..1) of box (= lower, upper). Default to (0.08, 0.11).
max_stripes (int, optional): typical/maximum number of black+white regions. Default to 5.
ytick_label_margins (float, optional): Location of distance labels on the Y axis. Default to 0.25.
fontsize (int, optional): scale bar text size. Default to 8.
font_weight (str, optional):font weight. Default to 'bold'.
rotation (int, optional): rotation of the length labels for each region of the scale bar. Default to 0.
zorder (float, optional): z order of the text bounding box.
paddings (dict, optional): boundaries of the box that contains the scale bar.
bbox_kwargs (dict, optional): style of the box containing the scale bar.
"""
warnings.filterwarnings("ignore")
# --------------------------------------------------------------------------
# Auxiliary functions
def _crs_coord_project(crs_target, xcoords, ycoords, crs_source):
"""metric coordinates (x, y) from cartopy.crs_source"""
axes_coords = crs_target.transform_points(crs_source, xcoords, ycoords)
return axes_coords
def _add_bbox(ax, list_of_patches, paddings={}, bbox_kwargs={}):
"""
Description:
This helper function adds a box behind the scalebar:
Code inspired by: https://stackoverflow.com/questions/17086847/box-around-text-in-matplotlib
"""
zorder = list_of_patches[0].get_zorder() - 1
xmin = min([t.get_window_extent().xmin for t in list_of_patches])
xmax = max([t.get_window_extent().xmax for t in list_of_patches])
ymin = min([t.get_window_extent().ymin for t in list_of_patches])
ymax = max([t.get_window_extent().ymax for t in list_of_patches])
xmin, ymin = ax.transData.inverted().transform((xmin, ymin))
xmax, ymax = ax.transData.inverted().transform((xmax, ymax))
xmin = xmin - ((xmax - xmin) * paddings["xmin"])
ymin = ymin - ((ymax - ymin) * paddings["ymin"])
xmax = xmax + ((xmax - xmin) * paddings["xmax"])
ymax = ymax + ((ymax - ymin) * paddings["ymax"])
width = xmax - xmin
height = ymax - ymin
# Setting xmin according to height
rect = patches.Rectangle(
(xmin, ymin),
width,
height,
facecolor=bbox_kwargs["facecolor"],
edgecolor=bbox_kwargs["edgecolor"],
alpha=bbox_kwargs["alpha"],
transform=ax.projection,
fill=True,
clip_on=False,
zorder=zorder,
)
ax.add_patch(rect)
return ax
# --------------------------------------------------------------------------
old_proj = ax.projection
ax.projection = ccrs.PlateCarree()
# Set a planar (metric) projection for the centroid of a given axes projection:
# First get centroid lon and lat coordinates:
lon_0, lon_1, lat_0, lat_1 = ax.get_extent(ax.projection.as_geodetic())
central_lon = np.mean([lon_0, lon_1])
central_lat = np.mean([lat_0, lat_1])
# Second: set the planar (metric) projection centered in the centroid of the axes;
# Centroid coordinates must be in lon/lat.
proj = ccrs.EquidistantConic(
central_longitude=central_lon, central_latitude=central_lat
)
# fetch axes coordinates in meters
x0, _, y0, y1 = ax.get_extent(proj)
ymean = np.mean([y0, y1])
# set target rectangle in-visible-area (aka 'Axes') coordinates
axfrac_ini, _ = at_x
ayfrac_ini, ayfrac_final = at_y
# choose exact X points as sensible grid ticks with Axis 'ticker' helper
converted_metric_distance = convert_SI(metric_distance, unit, "m")
xcoords = []
ycoords = []
xlabels = []
for i in range(0, 1 + max_stripes):
dx = (converted_metric_distance * i) + x0
xlabels.append(metric_distance * i)
xcoords.append(dx)
ycoords.append(ymean)
# Convertin to arrays:
xcoords = np.asanyarray(xcoords)
ycoords = np.asanyarray(ycoords)
# Ensuring that the coordinate projection is in degrees:
x_targets, _, _ = _crs_coord_project(ax.projection, xcoords, ycoords, proj).T
x_targets = [x + (axfrac_ini * (lon_1 - lon_0)) for x in x_targets]
# Checking x_ticks in axes projection coordinates
# print('x_targets', x_targets)
# Setting transform for plotting
transform = ax.projection
# grab min+max for limits
xl0, xl1 = x_targets[0], x_targets[-1]
# calculate Axes Y coordinates of box top+bottom
yl0, yl1 = [
lat_0 + ay_frac * (lat_1 - lat_0) for ay_frac in [ayfrac_ini, ayfrac_final]
]
# calculate Axes Y distance of ticks + label margins
y_margin = (yl1 - yl0) * ytick_label_margins
# fill black/white 'stripes' and draw their boundaries
fill_colors = ["black", "white"]
i_color = 0
filled_boxs = []
for xi0, xi1 in zip(x_targets[:-1], x_targets[1:]):
# fill region
filled_box = plt.fill(
(xi0, xi1, xi1, xi0, xi0),
(yl0, yl0, yl1, yl1, yl0),
fill_colors[i_color],
transform=transform,
clip_on=False,
zorder=zorder,
)
filled_boxs.append(filled_box[0])
# draw boundary
plt.plot(
(xi0, xi1, xi1, xi0, xi0),
(yl0, yl0, yl1, yl1, yl0),
"black",
clip_on=False,
transform=transform,
zorder=zorder,
)
i_color = 1 - i_color
# adding boxes
_add_bbox(ax, filled_boxs, bbox_kwargs=bbox_kwargs, paddings=paddings)
# add short tick lines
for x in x_targets:
plt.plot(
(x, x),
(yl0, yl0 - y_margin),
"black",
transform=transform,
zorder=zorder,
clip_on=False,
)
# add a scale legend unit
font_props = mfonts.FontProperties(size=fontsize, weight=font_weight)
plt.text(
0.5 * (xl0 + xl1),
yl1 + y_margin,
unit,
color="black",
verticalalignment="bottom",
horizontalalignment="center",
fontproperties=font_props,
transform=transform,
clip_on=False,
zorder=zorder,
)
# add numeric labels
for x, xlabel in zip(x_targets, xlabels):
# print("Label set in: ", x, yl0 - 2 * y_margin)
plt.text(
x,
yl0 - 2 * y_margin,
"{:g}".format((xlabel)),
verticalalignment="top",
horizontalalignment="center",
fontproperties=font_props,
transform=transform,
rotation=rotation,
clip_on=False,
zorder=zorder + 1,
# bbox=dict(facecolor='red', alpha=0.5) # this would add a box only around the xticks
)
# Adjusting figure borders to ensure that the scalebar is within its limits
ax.projection = old_proj
ax.get_figure().canvas.draw()
# fig.tight_layout()
add_scale_bar_lite(ax, length=None, xy=(0.5, 0.05), linewidth=3, fontsize=20, color='black', unit='km', ha='center', va='bottom')
¶
Add a lite version of scale bar to the map. Reference: https://stackoverflow.com/a/50674451/2676166
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object. |
required |
length |
[type] |
Length of the scale car. Defaults to None. |
None |
xy |
tuple |
Location of the north arrow. Each number representing the percentage length of the map from the lower-left cornor. Defaults to (0.1, 0.1). |
(0.5, 0.05) |
linewidth |
int |
Line width of the scale bar. Defaults to 3. |
3 |
fontsize |
int |
Text font size. Defaults to 20. |
20 |
color |
str |
Color for the scale bar. Defaults to "black". |
'black' |
unit |
str |
Length unit for the scale bar. Defaults to "km". |
'km' |
ha |
str |
Horizontal alignment. Defaults to "center". |
'center' |
va |
str |
Vertical alignment. Defaults to "bottom". |
'bottom' |
Source code in geemap/cartoee.py
def add_scale_bar_lite(
ax,
length=None,
xy=(0.5, 0.05),
linewidth=3,
fontsize=20,
color="black",
unit="km",
ha="center",
va="bottom",
):
"""Add a lite version of scale bar to the map. Reference: https://stackoverflow.com/a/50674451/2676166
Args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object.
length ([type], optional): Length of the scale car. Defaults to None.
xy (tuple, optional): Location of the north arrow. Each number representing the percentage length of the map from the lower-left cornor. Defaults to (0.1, 0.1).
linewidth (int, optional): Line width of the scale bar. Defaults to 3.
fontsize (int, optional): Text font size. Defaults to 20.
color (str, optional): Color for the scale bar. Defaults to "black".
unit (str, optional): Length unit for the scale bar. Defaults to "km".
ha (str, optional): Horizontal alignment. Defaults to "center".
va (str, optional): Vertical alignment. Defaults to "bottom".
"""
allow_units = ["cm", "m", "km", "inch", "foot", "mile"]
if unit not in allow_units:
print(
"The unit must be one of the following: {}".format(", ".join(allow_units))
)
return
num = length
# Get the limits of the axis in lat long
llx0, llx1, lly0, lly1 = ax.get_extent(ccrs.PlateCarree())
# Make tmc horizontally centred on the middle of the map,
# vertically at scale bar location
sbllx = (llx1 + llx0) / 2
sblly = lly0 + (lly1 - lly0) * xy[1]
tmc = ccrs.TransverseMercator(sbllx, sblly, approx=True)
# Get the extent of the plotted area in coordinates in metres
x0, x1, y0, y1 = ax.get_extent(tmc)
# Turn the specified scalebar location into coordinates in metres
sbx = x0 + (x1 - x0) * xy[0]
sby = y0 + (y1 - y0) * xy[1]
# Calculate a scale bar length if none has been given
# (There's probably a more pythonic way of rounding the number but this works)
if not length:
length = (x1 - x0) / 5000 # in km
ndim = int(np.floor(np.log10(length))) # number of digits in number
length = round(length, -ndim) # round to 1sf
# Returns numbers starting with the list
def scale_number(x):
if str(x)[0] in ["1", "2", "5"]:
return int(x)
else:
return scale_number(x - 10**ndim)
length = scale_number(length)
num = length
else:
length = convert_SI(length, unit, "km")
# Generate the x coordinate for the ends of the scalebar
bar_xs = [sbx - length * 500, sbx + length * 500]
# Plot the scalebar
ax.plot(bar_xs, [sby, sby], transform=tmc, color=color, linewidth=linewidth)
# Plot the scalebar label
ax.text(
sbx,
sby,
str(num) + " " + unit,
transform=tmc,
horizontalalignment=ha,
verticalalignment=va,
color=color,
fontsize=fontsize,
)
return
bbox_to_extent(bbox)
¶
Helper function to reorder a list of coordinates from [W,S,E,N] to [W,E,S,N]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bbox |
list[float] |
list (or tuple) or coordinates in the order of [W,S,E,N] |
required |
Returns:
Type | Description |
---|---|
extent (tuple[float]) |
tuple of coordinates in the order of [W,E,S,N] |
Source code in geemap/cartoee.py
def bbox_to_extent(bbox):
"""Helper function to reorder a list of coordinates from [W,S,E,N] to [W,E,S,N]
args:
bbox (list[float]): list (or tuple) or coordinates in the order of [W,S,E,N]
returns:
extent (tuple[float]): tuple of coordinates in the order of [W,E,S,N]
"""
return (bbox[0], bbox[2], bbox[1], bbox[3])
build_palette(cmap, n=256)
¶
Creates hex color code palette from a matplotlib colormap
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cmap |
str |
string specifying matplotlib colormap to colorize image. If cmap is specified visParams cannot contain 'palette' key |
required |
n |
int |
Number of hex color codes to create from colormap. Default is 256 |
256 |
Returns:
Type | Description |
---|---|
palette (list[str]) |
list of hex color codes from matplotlib colormap for n intervals |
Source code in geemap/cartoee.py
def build_palette(cmap, n=256):
"""Creates hex color code palette from a matplotlib colormap
args:
cmap (str): string specifying matplotlib colormap to colorize image. If cmap is specified visParams cannot contain 'palette' key
n (int, optional): Number of hex color codes to create from colormap. Default is 256
returns:
palette (list[str]): list of hex color codes from matplotlib colormap for n intervals
"""
colormap = cm.get_cmap(cmap, n)
vals = np.linspace(0, 1, n)
palette = list(map(lambda x: colors.rgb2hex(colormap(x)[:3]), vals))
return palette
check_dependencies()
¶
Helper function to check dependencies used for cartoee Dependencies not included in main geemap are: cartopy, PIL, and scipys
Exceptions:
Type | Description |
---|---|
Exception |
when conda is not found in path |
Exception |
when auto install fails to install/import packages |
Source code in geemap/cartoee.py
def check_dependencies():
"""Helper function to check dependencies used for cartoee
Dependencies not included in main geemap are: cartopy, PIL, and scipys
raises:
Exception: when conda is not found in path
Exception: when auto install fails to install/import packages
"""
import importlib
# check if conda in in path and available to use
is_conda = os.path.exists(os.path.join(sys.prefix, "conda-meta"))
# raise error if conda not found
if not is_conda:
raise Exception(
"Auto installation requires `conda`. Please install conda using the following instructions before use: https://docs.conda.io/projects/conda/en/latest/user-guide/install/"
)
# list of dependencies to check, ordered in decreasing complexity
# i.e. cartopy install should install PIL
dependencies = ["cartopy", "pillow", "scipy"]
# loop through dependency list and check if we can import module
# if not try to install
# install fail will be silent to continue through others if there is a failure
# correct install will be checked later
for dependency in dependencies:
try:
# see if we can import
importlib.import_module(dependency)
except ImportError:
# change the dependency name if it is PIL
# import vs install names are different for PIL...
# dependency = dependency if dependency is not "PIL" else "pillow"
# print info if not installed
logging.info(
f"The {dependency} package is not installed. Trying install..."
)
logging.info(f"Installing {dependency} ...")
# run the command
cmd = f"conda install -c conda-forge {dependency} -y"
proc = subprocess.Popen(
cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
# send command
out, _ = proc.communicate()
logging.info(out.decode())
# second pass through dependencies to check if everything was installed correctly
failed = []
for dependency in dependencies:
try:
importlib.import_module(dependency)
except ImportError:
# append failed imports
failed.append(dependency)
# check if there were any failed imports after trying install
if len(failed) > 0:
failed_str = ",".join(failed)
raise Exception(
f"Auto installation failed...the following dependencies were not installed '{failed_str}'"
)
else:
logging.info("All dependencies are successfully imported/installed!")
return
convert_SI(val, unit_in, unit_out)
¶
Unit converter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
val |
float |
The value to convert. |
required |
unit_in |
str |
The input unit. |
required |
unit_out |
str |
The output unit. |
required |
Returns:
Type | Description |
---|---|
float |
The value after unit conversion. |
Source code in geemap/cartoee.py
def convert_SI(val, unit_in, unit_out):
"""Unit converter.
Args:
val (float): The value to convert.
unit_in (str): The input unit.
unit_out (str): The output unit.
Returns:
float: The value after unit conversion.
"""
SI = {
"cm": 0.01,
"m": 1.0,
"km": 1000.0,
"inch": 0.0254,
"foot": 0.3048,
"mile": 1609.34,
}
return val * SI[unit_in] / SI[unit_out]
get_image_collection_gif(ee_ic, out_dir, out_gif, vis_params, region, cmap=None, proj=None, fps=10, mp4=False, grid_interval=None, plot_title='', date_format='YYYY-MM-dd', fig_size=(10, 10), dpi_plot=100, file_format='png', north_arrow_dict={}, scale_bar_dict={}, verbose=True)
¶
Download all the images in an image collection and use them to generate a gif/video.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_ic |
object |
ee.ImageCollection |
required |
out_dir |
str |
The output directory of images and video. |
required |
out_gif |
str |
The name of the gif file. |
required |
vis_params |
dict |
Visualization parameters as a dictionary. |
required |
region |
list | tuple |
Geospatial region of the image to render in format [E,S,W,N]. |
required |
fps |
int |
Video frames per second. Defaults to 10. |
10 |
mp4 |
bool |
Whether to create mp4 video. |
False |
grid_interval |
float | tuple[float] |
Float specifying an interval at which to create gridlines, units are decimal degrees. lists will be interpreted a (x_interval, y_interval), such as (0.1, 0.1). Defaults to None. |
None |
plot_title |
str |
Plot title. Defaults to "". |
'' |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to "YYYY-MM-dd". |
'YYYY-MM-dd' |
fig_size |
tuple |
Size of the figure. |
(10, 10) |
dpi_plot |
int |
The resolution in dots per inch of the plot. |
100 |
file_format |
str |
Either 'png' or 'jpg'. |
'png' |
north_arrow_dict |
dict |
Parameters for the north arrow. See https://geemap.org/cartoee/#geemap.cartoee.add_north_arrow. Defaults to {}. |
{} |
scale_bar_dict |
dict |
Parameters for the scale bar. See https://geemap.org/cartoee/#geemap.cartoee.add_scale_bar. Defaults. to {}. |
{} |
verbose |
bool |
Whether or not to print text when the program is running. Defaults to True. |
True |
Source code in geemap/cartoee.py
def get_image_collection_gif(
ee_ic,
out_dir,
out_gif,
vis_params,
region,
cmap=None,
proj=None,
fps=10,
mp4=False,
grid_interval=None,
plot_title="",
date_format="YYYY-MM-dd",
fig_size=(10, 10),
dpi_plot=100,
file_format="png",
north_arrow_dict={},
scale_bar_dict={},
verbose=True,
):
"""Download all the images in an image collection and use them to generate a gif/video.
Args:
ee_ic (object): ee.ImageCollection
out_dir (str): The output directory of images and video.
out_gif (str): The name of the gif file.
vis_params (dict): Visualization parameters as a dictionary.
region (list | tuple): Geospatial region of the image to render in format [E,S,W,N].
fps (int, optional): Video frames per second. Defaults to 10.
mp4 (bool, optional): Whether to create mp4 video.
grid_interval (float | tuple[float]): Float specifying an interval at which to create gridlines, units are decimal degrees. lists will be interpreted a (x_interval, y_interval), such as (0.1, 0.1). Defaults to None.
plot_title (str): Plot title. Defaults to "".
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to "YYYY-MM-dd".
fig_size (tuple, optional): Size of the figure.
dpi_plot (int, optional): The resolution in dots per inch of the plot.
file_format (str, optional): Either 'png' or 'jpg'.
north_arrow_dict (dict, optional): Parameters for the north arrow. See https://geemap.org/cartoee/#geemap.cartoee.add_north_arrow. Defaults to {}.
scale_bar_dict (dict, optional): Parameters for the scale bar. See https://geemap.org/cartoee/#geemap.cartoee.add_scale_bar. Defaults. to {}.
verbose (bool, optional): Whether or not to print text when the program is running. Defaults to True.
"""
from .geemap import png_to_gif, jpg_to_gif
out_dir = os.path.abspath(out_dir)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
out_gif = os.path.join(out_dir, out_gif)
count = int(ee_ic.size().getInfo())
names = ee_ic.aggregate_array("system:index").getInfo()
images = ee_ic.toList(count)
dates = ee_ic.aggregate_array("system:time_start")
dates = dates.map(lambda d: ee.Date(d).format(date_format)).getInfo()
digits = len(str(len(dates)))
# list of file name
img_list = []
for i, date in enumerate(dates):
image = ee.Image(images.get(i))
name = str(i + 1).zfill(digits) + "." + file_format
out_img = os.path.join(out_dir, name)
img_list.append(out_img)
if verbose:
print(f"Downloading {i+1}/{count}: {name} ...")
# Size plot
fig = plt.figure(figsize=fig_size)
# Set the facecolor
fig.patch.set_facecolor("white")
# Plot image
ax = get_map(image, region=region, vis_params=vis_params, cmap=cmap, proj=proj)
# Add grid
if grid_interval is not None:
add_gridlines(ax, interval=grid_interval, linestyle=":")
# Add title
if len(plot_title) > 0:
ax.set_title(label=plot_title + " " + date + "\n", fontsize=15)
# Add scale bar
if len(scale_bar_dict) > 0:
add_scale_bar_lite(ax, **scale_bar_dict)
# Add north arrow
if len(north_arrow_dict) > 0:
add_north_arrow(ax, **north_arrow_dict)
# Save plot
plt.savefig(
fname=out_img,
dpi=dpi_plot,
bbox_inches="tight",
facecolor=fig.get_facecolor(),
)
plt.clf()
plt.close()
out_gif = os.path.abspath(out_gif)
if file_format == "png":
png_to_gif(out_dir, out_gif, fps)
elif file_format == "jpg":
jpg_to_gif(out_dir, out_gif, fps)
if verbose:
print(f"GIF saved to {out_gif}")
if mp4:
video_filename = out_gif.replace(".gif", ".mp4")
try:
import cv2
except ImportError:
print("Installing opencv-python ...")
subprocess.check_call(["python", "-m", "pip", "install", "opencv-python"])
import cv2
# Video file name
output_video_file_name = os.path.join(out_dir, video_filename)
frame = cv2.imread(img_list[0])
height, width, _ = frame.shape
frame_size = (width, height)
fps_video = fps
# Make mp4
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# Function
def convert_frames_to_video(
input_list, output_video_file_name, fps_video, frame_size
):
"""Convert frames to video
Args:
input_list (list): Downloaded Image Name List.
output_video_file_name (str): The name of the video file in the image directory.
fps_video (int): Video frames per second.
frame_size (tuple): Frame size.
"""
out = cv2.VideoWriter(output_video_file_name, fourcc, fps_video, frame_size)
num_frames = len(input_list)
for i in range(num_frames):
img_path = input_list[i]
img = cv2.imread(img_path)
out.write(img)
out.release()
cv2.destroyAllWindows()
# Use function
convert_frames_to_video(
input_list=img_list,
output_video_file_name=output_video_file_name,
fps_video=fps_video,
frame_size=frame_size,
)
if verbose:
print(f"MP4 saved to {output_video_file_name}")
get_map(ee_object, proj=None, basemap=None, zoom_level=2, **kwargs)
¶
Wrapper function to create a new cartopy plot with project and adds Earth Engine image results
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
ee.Image | ee.FeatureCollection |
Earth Engine image result to plot |
required |
proj |
cartopy.crs |
Cartopy projection that determines the projection of the resulting plot. By default uses an equirectangular projection, PlateCarree |
None |
basemap |
str |
Basemap to use. It can be one of ["ROADMAP", "SATELLITE", "TERRAIN", "HYBRID"] or cartopy.io.img_tiles, such as cimgt.StamenTerrain(). Defaults to None. See https://scitools.org.uk/cartopy/docs/v0.19/cartopy/io/img_tiles.html |
None |
zoom_level |
int |
Zoom level of the basemap. Defaults to 2. |
2 |
**kwargs |
remaining keyword arguments are passed to addLayer() |
{} |
Returns:
Type | Description |
---|---|
ax (cartopy.mpl.geoaxes.GeoAxesSubplot) |
cartopy GeoAxesSubplot object with Earth Engine results displayed |
Source code in geemap/cartoee.py
def get_map(ee_object, proj=None, basemap=None, zoom_level=2, **kwargs):
"""
Wrapper function to create a new cartopy plot with project and adds Earth
Engine image results
Args:
ee_object (ee.Image | ee.FeatureCollection): Earth Engine image result to plot
proj (cartopy.crs, optional): Cartopy projection that determines the projection of the resulting plot. By default uses an equirectangular projection, PlateCarree
basemap (str, optional): Basemap to use. It can be one of ["ROADMAP", "SATELLITE", "TERRAIN", "HYBRID"] or cartopy.io.img_tiles, such as cimgt.StamenTerrain(). Defaults to None. See https://scitools.org.uk/cartopy/docs/v0.19/cartopy/io/img_tiles.html
zoom_level (int, optional): Zoom level of the basemap. Defaults to 2.
**kwargs: remaining keyword arguments are passed to addLayer()
Returns:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot): cartopy GeoAxesSubplot object with Earth Engine results displayed
"""
if (
isinstance(ee_object, ee.geometry.Geometry)
or isinstance(ee_object, ee.feature.Feature)
or isinstance(ee_object, ee.featurecollection.FeatureCollection)
):
features = ee.FeatureCollection(ee_object)
if "style" in kwargs and kwargs["style"] is not None:
style = kwargs["style"]
else:
style = {}
props = features.first().propertyNames().getInfo()
if "style" in props:
ee_object = features.style(**{"styleProperty": "style"})
else:
ee_object = features.style(**style)
elif isinstance(ee_object, ee.imagecollection.ImageCollection):
ee_object = ee_object.mosaic()
if proj is None:
proj = ccrs.PlateCarree()
if "style" in kwargs:
del kwargs["style"]
ax = mpl.pyplot.axes(projection=proj)
if basemap is not None:
if isinstance(basemap, str):
if basemap.upper() in ["ROADMAP", "SATELLITE", "TERRAIN", "HYBRID"]:
basemap = cimgt.GoogleTiles(
url=custom_tiles["xyz"][basemap.upper()]["url"]
)
try:
ax.add_image(basemap, zoom_level)
except Exception as e:
print("Failed to add basemap: ", e)
add_layer(ax, ee_object, **kwargs)
return ax
pad_view(ax, factor=0.05)
¶
Function to pad area around the view extent of a map, used for visual appeal
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes |
required cartopy GeoAxesSubplot object to pad view extent |
required |
factor |
float | list[float] |
factor to pad view extent accepts float [0-1] of a list of floats which will be interpreted at [xfactor, yfactor] |
0.05 |
Source code in geemap/cartoee.py
def pad_view(ax, factor=0.05):
"""Function to pad area around the view extent of a map, used for visual appeal
args:
ax (cartopy.mpl.geoaxes.GeoAxesSubplot | cartopy.mpl.geoaxes.GeoAxes): required cartopy GeoAxesSubplot object to pad view extent
factor (float | list[float], optional): factor to pad view extent accepts float [0-1] of a list of floats which will be interpreted at [xfactor, yfactor]
"""
view_extent = ax.get_extent()
if isinstance(factor, Iterable):
xfactor, yfactor = factor
else:
xfactor, yfactor = factor, factor
x_diff = view_extent[1] - view_extent[0]
y_diff = view_extent[3] - view_extent[2]
xmin = view_extent[0] - (x_diff * xfactor)
xmax = view_extent[1] + (x_diff * xfactor)
ymin = view_extent[2] - (y_diff * yfactor)
ymax = view_extent[3] + (y_diff * yfactor)
ax.set_ylim(ymin, ymax)
ax.set_xlim(xmin, xmax)
return
savefig(fig, fname, dpi='figure', bbox_inches='tight', **kwargs)
¶
Save figure to file. It wraps the matplotlib.pyplot.savefig() function. See https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html for more details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fig |
matplotlib.figure.Figure |
The figure to save. |
required |
fname |
str |
A path to a file, or a Python file-like object. |
required |
dpi |
int | str |
The resolution in dots per inch. If 'figure', use the figure's dpi value. Defaults to 'figure'. |
'figure' |
bbox_inches |
str |
Bounding box in inches: only the given portion of the figure is saved. If 'tight', try to figure out the tight bbox of the figure. |
'tight' |
kwargs |
dict |
Additional keyword arguments are passed on to the savefig() method. |
{} |
Source code in geemap/cartoee.py
def savefig(fig, fname, dpi="figure", bbox_inches="tight", **kwargs):
"""Save figure to file. It wraps the matplotlib.pyplot.savefig() function.
See https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html for more details.
Args:
fig (matplotlib.figure.Figure): The figure to save.
fname (str): A path to a file, or a Python file-like object.
dpi (int | str, optional): The resolution in dots per inch. If 'figure', use the figure's dpi value. Defaults to 'figure'.
bbox_inches (str, optional): Bounding box in inches: only the given portion of the figure is saved.
If 'tight', try to figure out the tight bbox of the figure.
kwargs (dict, optional): Additional keyword arguments are passed on to the savefig() method.
"""
fig.savefig(fname=fname, dpi=dpi, bbox_inches=bbox_inches, **kwargs)